Using dark states for exciton storage in transition-metal dichalcogenides.

نویسندگان

  • Frank Tseng
  • Ergun Simsek
  • Daniel Gunlycke
چکیده

We explore the possibility of storing excitons in excitonic dark states in monolayer semiconducting transition-metal dichalcogenides. In addition to being optically inactive, these dark states require the electron and hole to be spatially separated, thus inhibiting electron/hole recombination and allowing exciton lifetimes to be extended. Based on an atomistic exciton model, we derive transition matrix elements and an approximate selection rule showing that excitons could be transitioned into and out of dark states using a pulsed infrared laser. For illustration, we also present exciton population scenarios based on a population analysis for different recombination decay constants. Longer exciton lifetimes could make these materials candidates for applications in energy management and quantum information processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dark excitons and the elusive valley polarization in transition metal dichalcogenides

A rate equation model for the dark and bright excitons kinetics is proposed which explains the wide variation in the observed degree of circular polarization of the PL emission in different TMDs monolayers. Our work suggests that the dark exciton states play an important, and previously unsuspected role in determining the degree of polarization of the PL emission. A dark exciton ground state pr...

متن کامل

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides

Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influenc...

متن کامل

Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides

We present low-temperature magneto-photoluminescence experiments which demonstrate the brightening of dark excitons by an in-plane magnetic field B applied to monolayers of different semiconducting transition metal dichalcogenides. For WSe2 and WS2 monolayers, the dark exciton emission is observed at ∼50 meV below the bright exciton peak and displays a characteristic doublet structure whose int...

متن کامل

Dark excitons and the elusive valley polarization in transition metal dichalcogenides

A rate equation model for the dark and bright excitons kinetics is proposed which explains the wide variation in the observed degree of circular polarization of the PL emission in different TMDs monolayers. Our work suggests that the dark exciton states play an important, and previously unsuspected role in determining the degree of polarization of the PL emission. A dark exciton ground state pr...

متن کامل

Optical absorption by Dirac excitons in single-layer transition-metal dichalcogenides

We develop an analytically solvable model able to qualitatively explain nonhydrogenicexciton spectra observed recently in two-dimensional (20) semiconducting transition-metal dichalcogenides. Our exciton Hamiltonian explicitly includes additional angular momentum associated with the pseudospin degree of freedom unavoidable in 20 semiconducting materials with honeycomb structure. We claim that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2016